AD-R166 664 THE STRTUS OF VERIFICRTIDN TECHNOLOGV FOR THE ﬂl)ﬁ 14
(TRADEMARK > LANGUAGE. . (U) !NSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA A A NYBERG E

UNCLASSIFIED IDA-P-18359 IDA/HA-83-. 30214 Hoﬁ9.3-84 C- 0031 F/G 9/2

LV

Paiihd A bo me)

(- X A4 A}

[2% Sad

-
-

S AS B

»

PN MR,

SEEF

1.6
=

I

14

2 1l

CHaRT

MICROCOM

r. L AR Rafitdin ..? Lt T__- M _? - v'j_‘r__r_rv— o ‘_7.7r__3—.‘r..7'_4r~'r_? AL ar S S S S T R St ENACAE T A A i Ak Al b el el A} .- =

B
i -
/S .z

. Copy 16 of 42 copies

(2

.;‘
.._1
oy -]

.m,-:;.*.-ﬁ
L} -~ .
'_- :' "» by

.

AD-A166 664

\
\

IDA PAPER P-1859 \/

THE STATUS OF VERIFICATION TECHNOLOGY :;-j:.;;_A.;f:'?:
! FOR THE Ada* LANGUAGE L
: -

-
. v

- Karl A. Nyberg RN
Audrey A. Hook -
Jack F. Kramer

July 1985

) Prepared for
Office of the Under Secretary of Defense for Research and Engineering v

INSTITUTE FOR DEFENSE ANALYSES -E’ "i
1801 N. Beauregard Street, Alexandria, Virginia 22311 e

} Ada® is a registered trademark of the U.S. Government ey
] (Ada Jaint Program Office) IDA Log No. Ha 85-30214 DN

.............
..........
TNt e
.............................
e T ey e T T e e T Ta e N

The wark reported in this document was conducted under contract T
MDA 903 84 C 0031 for the Department of Defense. The publication Lo
of this DA Paper does not indicate endorsement by the Department i—‘

of Defense, nor should the contents be construed as reflecting the
official position of that agency.

This Paper has been reviewed by IDA to assure that it meets high .
standards of thoroughness, objectivity, and sound analytical method- ‘
ology and that the conclusions stem from the methodology.

| |
Sl

Approved for public release; distribution unfimited.

. :
-
? , ZI

Fi‘z" PR A M S e T ; T G RCK MMM S i S N e S A R i Sl Al Aad ik A St Pad et uad Sl onde Al Unfi Sl St Sel oufh el Sed g hed Bee

: |

A

d
- . . ;) /oo SRR
‘ E Ty CLASS D L /é& ¢ ©f S T
: REPORT DOCUMENTATION PAGE A
A
. § o REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS q‘
o Unclassified NN
"' 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT R
3 . e Tt
‘ 7o DECLASSITICATION | DOWNGRADING SCHEDULE Approved for public release; distribution ;—*—i
oy N/A unlimited. e
I PERFORMING ORGANIZATION REPORT NUMBERGS) S. MONITORING ORGANIZATION REPORT NUMBER(S) il
IDA Paper P-1852
]
"6 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 78. NAME OF MONITORING ORGANIZATION
al Tnstitute for nefense analfsed % OVSMRE (Mo™ INA Management 0°cice)
S ! for Defense
"> F6c. ADDRESS (Gity, State, and Z#P Code) - 7b. ADORESS (City, State, and 2IP Code)
.-} 1801 N. Beaurecard Street Tenn ?eauremard Street
-l Alexandria. VA 22311 Alexandiria, VA 223211
e ’)
*: -
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
O PRGANZATION, 1 o oot 0f spplicable) .
-ice o the Under Secretagy ongnpe MDA 903 840 0031 :
-~ Aok 2 Tyl PR R -) B
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OFf FUNDING NUMBERS ‘)
PROGRAM PROJECT TASK WORK UNIT .
Ada Joint Program Office ELEMENT NO. | NO. NO. accessionno. |
t 1211 Fern St, Room C-107 T-E-30A Y.
L_Arlinecop, va 22000 H
1. TITLE Onciude Security Classification) K
- !
The Status of Verificatlion Technology for the Ada Lancuage R i
12, 'ﬁasonu AUTHOR(S). -
. arl A. Nyberg,Audrey A. Hook, Jack F¥. Kramer U
13a. I;m 0{ REPORT 13b. TIME COVERED 18. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT !L . 1
ina EROM TO July 1088 19 ; ~:
16. SUPPLEMENTARY NOTATION ;:: :
o [
by
‘\ <
. 17. COSATI CODES 1&. dsquCT TERMS (Continue on reverse if necessary and identify by block number) L H
a programming language, verification, software

FIELD GROUP SUB-GROUP

development methodologies, verification technoloev.

=" §19. ABSTRACT (Continue on reverse if necessary and identify by block number)

o This report provides a detalled research and develormment plan for the
development and deployment of an Ada verification capability. The backeround
history, and goals of both Ada and verification are 4discussed. Sneci€ic F
recommendatlions for integrating verification technology in the software
development process (particularly with Ada) are presented. The necessary
research items to he pursued in support of the goals are also presenteAd.

ot This report consists of two major sections - the text and supportin=-
arpendices and references. The apnendices generally describe efforts being
undertaken in varlous areas and are annotated with status and roints of
contact for further information.

§
" [20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
D uncLassiFIEDAUNLIMITED [T SAME As RPT. I DTIC USERS
228 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Ares Code) [22c. OFFICE SYMBOL
. DO FORM 1473, 84 MAR 83 APR edition may be used unt!l exhausted SECURITY CLASSIFICATION OF THIS PAGE
L . All other editions are obsolete UNCLASSIFIED r ’

. o e e, .t RURPCRCIRCILICIL - .« - R R L SRR P e e,
b TR S. WAL LY. "L, TS TSI O A U N . LR S S O S T AT WY AR VR Y O AT

AT TR T M S L T
*.A')‘J AT AL o s’ alakaban

..................

IDA PAPER P-1859

THE STATUS OF VERIFICATION TECHNOLOGY

FOR THE Ada LANGUAGE

Karl A. Nyberg
Audrey A. Hook
Jack F. Kramer

Accession For

t—NTIS GRA&I g
DTIC TAR

Unanneuuced O

Justirication.

July 1985

By —
_pistri?'ti*:/ _

Avatlo™ i Codes

Pla

—_— —_—

)

1DA

INSTITUTE FOR DEFENSE ANALYSES —

Contract MDA 903 84 C 0031
Task T-5-306

AL S e

-7...' -
T
- » -.-!
e "
.. - -
'. ._-\. ‘
'.-.o." 3
4.' .\ o]
-l
-
NS,

«
T T N L AT TR TR A AT S BRIV A et .)

T T e S PN SRR

PP PR AT S PN WS PEPE PR PR S P LF S G T S TS VS el ol bl o o i ek A

Commn aa o o

This paper discusses the subject of verification of Ada programs and the
requirements for verification technology in the context of secure systems. It examines the
areas where rescarch has either started or is needed in order to develop a verification
capability for Ada programs. A phased plan for developing verification technology has
been proposed; estimates of time and level of effort are provided. Additionally, Appendix
A identifies the Ada development projects that will require verification of software;
Appendix B describes some of the methodology development efforts; Appendix C
identifies many of the current research efforts in verification technology while Appendix D
identifies those efforts that focus on the Ada language. Appendix E provides a list of
verification Working Groups and the contact for each group who can provide additional
information. This research was conducted for IDA by Karl A. Nyberg of Verdix
Corporation.

Many of the concepts discussed in this report were also discussed during two
Verification Workshops conducted by IDA; however, the plan of action presented in this
report was not formally included in the deliberations of the workshop participants. The
variety of research efforts and working groups that are currently addressing the problems
of verification technology and applying verification to Ada programs is indicative of the
level of interest demonstrated by academia, industry and government.

..................

................................

s

'-'
.!
!
.

«
o
<
v

AR

‘el
. s 3

O oo VB A M S M e £ i el e s eT——————

Pt e B AR [ACOA PaChAat A AaChfe sy b Sl 240 A te RCiRech A A AN Y

2.3. Verification Technology ..cccccccrimiiimerrnnicreinicinietnnneicnreessees s s sssstsssessssascsevens e
3. Integrating Ada Verification in the Software Development Process
3.1, Current Practices ...ttt e s s naaras s s sananes
8.2. Design Verification with Ada ..ottt et

3.3. Integrated Design and Implementation Verification with Ada ...

4.2. Specification Language for Adaiiiniiiinicienniicenricencoresnee e e snnaesessnnac e aen

4.3. Automated Tools for Veriicationccocvvervcccennnnnns

..................................

B.1.2,1.2. ExXCePtionsocciiiiiiiiiiiiiiiciiirinccritreiressenrereeseresrntresseesessastoserene stensteeess sesssenereesen
5.1.2.2. Concurrent Constructs in Adacccoeviiiiieiiiiiiiiii et eanaee

5.1.3. Model of CONCUPTENCYcocooviiieiiieitieierieeentiireernee ceiieeee saviesesessesseees eeeresenreenneraan

>

[&)

[]

ot

-3

e
i DR

ey -"y“ -

A

)
'
o
.

N2

L
Lg

.
L

g

PR
R

s LR

{ Py

5
"
o

porae

ey 0y s s

-

NG

-
s
-

o

L

‘.'. 3 "l I
Ty e e a

Anala'a b il i ial Anned Sn led el St A b Ll Al SAC AN AC £ A -A A" 4 0* 2t Q2 8 0 o0 Lelng o S T

B.1.4. Predictability ...oocccooieirieieecciec it e e e e 8
. B.2. VerieBlion ooooiiicieeieiieiiecreeeireseerrntrese e ettt ettt e s s bt e e se s se R s b e et s st r e b e ne e e s s narne s 8
g
5.2.1. CODCUPTENCY ..covvnrrerreerrrrerereeosossacntsesssissinnesssssssisssssssasossaratissseasaasesssssbastsesntesiesssssneerens 8
oy
w.
L 5.2.2. Fault Tolerance / Reliabilitycccccoovurimniiiieiec e 8
~ 5.2.3. Floating Point APILRIMEIC ..coovvooveeceerriesivareseeesnearessessesesenese s seenssesssessssssosseessssssssssee 9
f.
5.3. Ada and VeriICationccccoiiimreiiiiiimiiiieiitir ettt se s s e as s a s e s e s s s nanan s 9
- 8. Verification and the Software Development Processccooiiiiiiininniinn 9
8.1. Requirements ...ttt s e 9
B 0 T T . SO PO T PUP PP 9
W 8.3. Implementation and Testingccocciiiiiiiiimirrctc e 10
B.d. MABINTEODANEE ...oooeeiiictrrrreccrrrc e ereccsrnat e s sessaaar e e s sosars st essessrsarnsss sesrssntnnssesesarsssssbnanseesas 10
7. Research and Development Plan ...ttt 10
. 7.1. Formal Semantics of Adacoorrireimmininninnntitrrcretnres e st nne e e 11
7.1.1. Sequential Portionccccccciiiminnnieinniirtt it sar s s 11
) 7.1.2. Concurrent ASPECtBc.ccoiiiiiiiniiiiiiininisertirteniissssossssssssssonssssssrisssassrnsssinsassnssssssssmsesne 11
- -
7.2. Speciflcation LADGUAZEcccccovmmriiuciimiiimtiiitiinsesistenssnssse s nsas i s sessssesssssssnnssssnsssan 11
7.2.1. Sequential Portion ...t et e e s e 12
7:2.2. Concurrent ASPECEScccccricmeeminteeiiiiorissiiniomassserieieistesieieisssssssissssssissssssssssnssnsssassae 12
7.3. Automated Verification Tools ..ottt e sste e ees s era e 12
7.3.1. PrototyPe ToOlsocooiiiiiiiiiiierecctitiece e trrsrner e se s e s smne e ae e srnneee s s s et e et s s et e et s 12
= 7.2, INLEEPALEd TOOIS ...oocveeeireereieieee et es et rete st sre st e e e e se s e e ne s aa e e eree st e enranaeereeras 12
LI R PO 1L
.. 8. Appendix A - Current Ada Efforts Requiring Verificationccccceeivvviivvieenieiinnne. 14 : ‘.::'.
r’ 8.1. Inter-Services/Agency Automated Message Processing Environment (I-S/A :
AMBPE) o e et 14 R
SURN
p N
L
4 42 - N 1
RS R S B T R R ST R T R I A AU AR SRR

...........

.......

o W]

8.2. Department of Defense Intelligence Information System (DoDIIS)cccceeee.

8.3. World-Wide Military Command and Control System Information System

R A ARy LA A s A

(WIS) ettt bbbt s e s b

8.4. Army Secure Operating System (ASOS)ccovviiiiniiniiinii e

8.5. Secure Communications Protocol ...t

9. Appendix B - Verification in the Software Development Processccoeieins

’ 8.1. ACM National SIGAda Design Methodology Committeecccooniiiiinnninnnn.

i 9.2. Verification in Life Cycles ...ttt

Lt 9.3. Ada-Europe Formal Methods Working Groupcccccciiiviiiiimecniiniionseinneniiecn e

E: 10. Appendix C - Current Verification Systemsccoooiiiiniiiiinininne

F 10.1. Gypsy Verification Environment (GVE)cccoiiiieeniiniinmireeeetie vt cieceie e
»

E 10.1.1. Encrypted Packet IDLerfacec.ccocoiviniivininscnnnecrneierenssnsescosssnenmaessueseeiansens

’ 10.1.2. Message Flow Modulator ...ttt scsseere s e e

10.1.3. KAIS Front End Unitcoociriviriiiiirninecccenvecanen, e

10,20 ASFIPI oottt nr st e st ee e sr e e seo e e e st et b ettt em e st e st re sttt sae e st e oteeanan

10.3. Hierarchical Development Methodology (HDM) ..o

10.3.1. System Implemented for Fault Tolerance (SIFT)cccconvvmneciniininnininiecnninnen.

10.3.2. Kernelised Secure Operating System (KSOS)cocciiiiiiiiiiiininennniiinien v

10.3.3. Probably Secure Operating System (PSOS)ccccciviiiiiciicniniiccne e

10.3.4. Honeywell Secure Communications Processor (SCOMP)cccocciireccnicennne.

10.4. Formal Development Methodology (FDM) ..ottt see et s

10.5. Modula Veriflcation SyStemo.ooiiiiiiiiiiriiicirrceccrteerteere e ree s e e s e e et e eae e e e

10.8. Verus Verifleation Systemccocoiiiiiiiiiiiieieceiiten e ceer e e s e st e e e e e s e s eneenee

11. Appendix D - Current Ada Verification Efforts ...,

11.1. Anns Specification Language

b~
~

T e T R U AL St . . . R
IR DRI PPN YOr Y WA W 1P TG WP T WURPE AT TPUL YT IR Sy e W T SR G - A . PG PN D P OV Wt 1

14

14

14

15

16

16

18

18

17

17

18

18

18

18

19

19

3

=

RIS S e R e ey

RN o iar ahe. S0 et Anyin s A A e ol ulie- Jlin' et dat e hes dat aes fas i e Be e e i Bt SR ¥

“r

(]
L i‘d

11.2. Asphodel Specification and Design Languagecccoiiiiiieiiiniiiniiniiiinnn, 22

1

n 11.3. Cornell Attribute Grammar ToolS ... e iee e vesteee e errraeeeaen s 22

) . 11.4. Prototype Ada Verification System ...t 23
\ u‘:

< 11.5. Modula Verification System Conversioncccccccvivriiemiminnceninreosseraneeseeseeenenes 23
11.8. NSA Internal Efortscoooiiii it ere st e ettt re s e s s e es 23
12. Appendix E - Working Groupsccccccoiiiimiiiiiii e 25
12.1. IDA Workshops on Formal Specification and Verification of Ada 25
12.1.1. SecUre SYStOIMSccococcriiiiiiriicrreeeceiinnrteesornirreseseasassatrasteseesansseneetsaaseasetansaeesenasasreres 25
12.1.2. Near Term Veriication ...ttt e e 25
12.1.3. Formal Semanticscccccciiiiis it s 26
12.1.4. Specification LANGUARES ...ttt ie et erirnes s et are s etanre e et e nneeees 28
12.1.5. Verifcation in Life Cycles ...ttt ccrieccnesreresesesssrssse s sesrarsssanssrnnoee 26
12.1.8. CIUSLEPS ..ottt et bbb er b er bbb s e 27
12.2. Ada Task FOPCe .ottt e s e e st et e e s e sessbe e e eaare e s s e eae e s s asananns 27
12.3. European Efforts on Formal Semanticsccociviiiiriiinriiniciireeccceeeeree e, o7

13. REferencCesooouiieeieeiieeeiienieeteteniaertersnresieesersassnsresssssssssnsensassesasssasssrsnssssssnsnssansnsnsessannns 29

h‘ Y,

. . S e T \ E N N T SURPRIRA oot T T T e e e ettt
L. R " Lol et e T e e e e T e el . .
A T L e e i N IR R
- RIPGAT I RI SPOT TP Tht PP RGP - i e rat AN e ety e A ta A e e A

-y

R L

e et e Ve
cala’aTatYal

{.-"".' Rt e SRR AU S st gt

LAt SEC g ity N SO L A ot s aUi SR Sl st ares aile el he as o vy

1. Introduction

This report provides a detailed research and development plan for the development and deployment of an
Ada verification capability. The background, history, and goals of both Ada and verification are
discussed. Specific recommendations for integrating verification technology in the software development
process (particularly with Ada) are presented. The necessary research items to be pursued in support of
the goals are also presented.

This report consists of two major sections — the text and supporting appendices and references. The
appendices generally describe efforts being undertaken in various areas and are annotated with status and
points of contact for further information.

2. Background

The need for application of verification technology to the development of software written in Ada is
becoming critical. The Ada mandate for software development is taking hold, and other issues relevant to
the Department of Defense (particularly security) must be examined in the light of this mandate. Tle
development and subsequent publication of the Trusted Computer Security Evaluation Criteria (TCSEC),
by the Department of Defense Computer Security Center (DoDCSC) on the heels of that of the Ada
Language Reference Manual (ANSI/MIL-STD-1815A-1983) [Ada] has reinforced the need to address the
issue of Ada verification. A recent report provided by the DoDCSC [Rowe| describes some of *he interests
and goals of the Center in this area.

As an example of the urgency for integration of verification and software development in Ada, there are a
number of efforts within the DoD that have requirements for a high degree of security (obtained through
the use of verification techniques) and for implementation in Ada. (Some of these efforts are listed in
Appendix A.) Failure to integrate these two technologies could jeopardize the gouls toward which these
efforts have been directed.

2.1. Programming Languages

Programming languages have evolved from the low level machine codes and assembly languages of the
1950s to the more abstract “high level” languages of the 1980s (Pascal, C, Ada, etc.). Along the way,
each new language has left its particular mark upon the computing milieu. The presumption about
evolution is that ench succeeding generation of languages is better (in some objective sense of the wora)
than the previous generation. Some of the features that have been used to distinguish new programming
languages have been in the areas of data abstraction, conditional constructs, concurrency, suicability for a
particular type of application (business, scientific, list processing, communications or operating systems).

Although the evolution of programming languages has provided many benefits for the software
development profession, there are also drawbacks to the evolution of programming languages. Foremost
among them, and perhaps the rasson d’ctre for the development of the Ada language, is the incredible
effort required over the life cycle of software development projects to support the multitude of languages
and hardware systems. Another major drawback is the limited scope of hardware upon which progra ns
written in a particular programming langusge may be executed. Aside from such languages as C,
FORTRAN, and COBOL few programming languages (and virtually no systems programming languages)
are widely available on a multitude of hardware configurations. The goal of a standardized Ada is that
programs written to execute on one set of hardware will execute on other sets of hardware with a
minimum of modification.

[d

Tt m et T - et T At R P - T
AR TR S N R N . .t [e

. S DAL,
R T . Ve .
AN A A A A NAp cAtale avaa Jo

IS T A TN o B e TR SO
S e PR . . LR .
PPNV JAPDY oo Pl PRV PRSI S S ST T R Sl G ST S S Gy S VL T

[

m-‘ Bzt oAt A e h AL M A A A SME T S0 6 S o o ML S e e e e e e e e O e et
“

:

2.2. Software Development Methodologies

The software development lifecycle can be broken down into four general phases: requirements, design,
implementation and testing, and maintenance. A common mechanism for graphically displaying these
phases is the standard waterfall diagram shown below, and basic aspects of each phase are presented. As
this lifecycle is well understood and applied, each area will not be further elaborated here, but reference is
made to Section 8, where a method for the integration of verification techniques into the software
development lifecycle is presented.

[SSS——

L _
DMPLIMENTATION ‘
AND
TRSTING
=
MAINTENANCE R
R
Aside from the generally accepted practices of software development such as top-down development (also o & T
called structured design, hierarchical development, etc.) a particular emphasis is being placed on using <2 B :

what is known as an object oriented approach in the development of Ada software. [Berard| This
approach applies particularly during the design phase of software development and attempts to place
more emphasis on the development and use of abstract data types in the software development cycle.

2.3. Verification Technology

Verification is the process in which mathematical reasoning is used to show that a system satisfies its T

requirements. The two particular types of verification that are distinguished are those of design AR ;‘_'_,~
verification and of implementation venfication. Design verification is the process of showing that the - ‘-f-:"_:
design of a system (expressed as a model of the system in a specification language) satisfies the E— .

requirements of the system. The requirements of the system are usually expressed as constraints or - -—-—‘#

invariants on the system’s behavior — relations between variables making up the state of the system.
Design verification is performed in a non-procedural language that expresses what is being accomplished,
not how it is being accomplished. Design verification is no guarantee that the resulting system will indeed
have the properties, only that the model of the system (as expressed in the design) does. Implementation
verification ‘s required to bridge the gap between the design and the executable program. Implementation
verification is used to show in a constructive manner that an implementation satisfies its requirements by
actually developing a system. The r-quirements of the system are expressed as pre- and post-conditions
(Floyd67], and the post-conditions are pruven from the pre-conditions and the symbolic execution of the
constructed system. These pre- and post-conditions are obtained from the design, and any attempts to
apply implementation verification techniques in the absence of a design {or worse yet, in a post hoc
fashion, after the program has been developed) are subject to frustration and futility. These techniques
must be integrated into the software development lifecycle (see Section 8 for such a discussion), and not
applied independently of such lifecycle.

A AN P Sl S e A A R A U A A o MR A i A S A A CA e B AR Al ML Al Sl el Ak Al Sad L arh gt aodl

Y

RN Verification technology has progressed to the point where it is now possible to apply the techniques to the
development of smail systems for both design and implementation. However, use of the technology is

E limited by the languages available for describing such systems, which were developed as many as ten

o] years ago, and do not reflect the state of the art in programming language technology. Another difficulty
preventing the use and application of verification technologies is the cost involved. Use of the tools

.. requires individuals with a high leve] of formal education, and requires a major commitment to computing

e resources in order to be able to be applied effectively. For this reason, larger projects desiring to apply

- verification bave stopped at the design verification level.

- In the past, applied verification technology has been driven more by the security community than any

other community. (For a listing of automated verification tools and their applications, see Appendix C.)
There are also some related issues in the area of reliability that indicate that the sorts of language
limitations necessary for allowing the proof of properties relevant to reliability are the same sorts of
limitations as those required for performing verification.

3. Integrating Ada Verification in the Software Development Process

In the application of verification technology to Ada, there are three approaches that can be raken:

l’" e Follow Current Practices

o Design Verification with Ada

» Integrated Design and Implementation Verification with Ada

.' Issues surrounding each of these aiternatives are discussed in the following sections.

3.1. Current Practices

Ignoring the particular requirement of Ada with respect to formal verification is the simplest of the R
- alternatives available. [t requires no development o1 additional tools, no training in additional’ E..
. technologies, no modification of the current development approach. From the point of view of secure ‘
- applications, the implementation language used in the development of an Al system (currently the

highest rating given by DoDCSC) is irrelevant. Only design verification must be performed {using one of

the “approved’’ verification systems — Gypsy, HDM, or Affirm}, and ong informal correspondence with

the implementation must be given using a method such as verification'' and validation (V&V). This . ‘

approach does make the informal correspondence significantly harder to do than if a consistent set of ﬁ-—
- languages were used, but is currently being used in the development of such Al secure systems as the =+ =

Honeywell SCOMP, so is not infeasible.

TYEERY VTV T T Y YUYW ¥ T U Y NEEEELT .V VT Y EEWTW N ¥ R R v rummmaw v v e w3
- . 4 v . B e -
l!w v
s
o

The drawback to this alternative is that it is necessary for the system developers to be fluent in multiple

methodologies, systems, and languages, all differing from one another if the use of some form of design
~ verification is desirable. While t'Wis may be an acceptable solution in the very short term, it will not be
sufficient for the long term, Jue to the complexities of the various systems. Furthermore, this E
fragmentation of the development teams along the lines of specialization (design, verification,
implementation) will increase the overhead associated with program development,

LY f YT vowov e

T T TR ..V VYEE ST
. Il = .
, A et

. t The key word in this sentence is ‘‘sdditional"’ — the tools and technologies for verification will still have to be available, and A
v individuals still trained in their use and application. L.
B tt Unfortunate, but the same word is used in differring contexts by different people to mean different things. Use of t‘:;.,.

“verification” in this context is what has lead to the concept of post hoc formal verification, which is totaily inappropriate.

(PS)

- “ - o -.. '-' - - . . . - . - - Pl . . - -
e e e LA T s ST T e el e e e T et T e T T T L BN
LA AP RO TPUSNEUA P \R SR SPRPLIT S o SR L Aetalntoltodiea talelentelatar. Anblaloalafalal afacatartcescn sl aunvaca @' 2. a_a_a a aa

RN Sl adeir Mt ATt e i A it Satr et~ SAP a2 aalr o O At SRRl il s L it AR S SN SR L I S e AR L R et G Aniind At Al il SdE R S A

Yo

3.2. Design Verification with Ada

A ‘second alternative that can be taken is the use of Ada as a design language, both for implementing
standard requirements and design methodologies, as well as in preparation for design verification. The
requirements and design phases could all be done in Ada (or an Ada Program Design Language [PDL)}),
and with the development of supporting verification tools, design verification performed. This would

significantly decrease the gap between the design being verified and the implementation. It would also .\
only require the developers to be familiar with a much smaller number of methodologies, permitting a T

more unified approach to the development of verifiably secure systems than the current disjointed
approach being applied.

The glaring drawback to this alternative is the lack of automated tools for the support of design and for
verification, as well as the lack of a suitable language definition for design specification. Although some
tools have been developed for the use of Ada as a design language, many of them are little more than
subsets of Ada front ends. There are no tools available for the verification of designs written using an
Ada PDL, nor do there appear to be any in development. The only existing serious specification lauguage
particularly directed toward Ada (Anna (Annal) has only limited application at the current time. Anna o
does not contain a sufficient set of constructs for performing design verification, but rather is geared more .
towards the development of runtime checking. Furthermore, Anna is not integrated with an Ada
compiler, but must be run as a separate tool. An additional drawback to this approach is the lack of a
formal semantic definition of the constructs in the portion of the language used for design (the non- =
procedural portions) verification. Without such a semantic definition it remains impossible to reason

about program designs and prove properties of these designs.

3.3. Integrated Design and Implementation Verification with Ada

The final alternative to applying verification technology to Ada would be to perform implementation g
verification as well as design verification. This alternative would provide the moat integrated approach of

verification in the software development process, directly following design verification as one step in :the

total verification process. It allows the greatest amount of formalism to be applied in the development of

software, and allows verification to be applied down to the source code level." However. this alternative is

currently infeasible from both a theoretical and a practical point of view (particularly so for Ada). It

inherits ail the difficulties of performing design verification mentioned above, as well as some Ada unique n
problems. In addition to a semantics for the non-procedural portions of the language, the procedural N
portions must also have their semantics {ormally defined. Additional tools for processing the programs,

their specifications, and symbolic execution of the programs must be developed. Tools for proving the
correspondence between the specification and the implementation (verification conditions resuiting {rom

the symbolic execution) must also be developed.

4. Goals

This section describes goals to be pursued in developing and deploying an Ada verification capability.
Each goal is described in terms of those aspects of it that may be completed in the near-term (up to three .
years, now to 1988) and long-term (more than three years, past 1988). This time span is :hosen as the ~
definition of the Ada language is currently “frozen’’ until 1988, and it would be beneficia' to have some
recommendations available to the language maintenance organization when ths time for review of the

language arrives. The first two alternatives given in the previous section (current practices, and design <

verification with Ada) help achieve short term goals, while the third alternative (integrated design and

implementation verification with Ada) is a more long term goal. ~
\‘

t Verification could conceivably be applied to even lower levels, to microprocessor inatruction scts, and even to gate [eveis, ‘
although the techniques and mechanisms required for this level of verification (to say nothing of the hardware resources required)

4

e e .

e e e T AT NI R TN T T T

L B R R AP A I PR AP R N BRCYREN S) . . N L e e BRI R .
e s a a e R a e e e n e A A e e e A e et NPT AP SRPPIY VR VLTL VLA PO PRI L GV ST WY OF G L7 SRV STW

B W TN AT T AT AT T RA T UNATR LN L N T e S e S T S S YT T T R A A e Ty DI A M e -) B AR i S Sae WA S el AL

4.1. Formal Semantics of Ada

A major goal that must be obtained before any significant application of verification technology may be
made with Ada is the development of a formal semantics of the language. As a formal semantics of the
language was not developed in concert with the development of the language, it might not be possible to
develop a semantics for the entire language. However, if semantics for only a portion of the language can
be developed, the implication is that only that portion of the language may be used for systems that will
require verification. There are a number of efforts already underway, however they suffer from disjoint
interests, approaches, and are not well coordinated with one another in order to provide a single definitive
result. (Some of these efforts are noted in Appendix E, Sections 12.1.3 and 12.3.) Once the semantics are
developed, progress may be made toward development of automated tools for the support of verification.

4.2. Specification Language for Ada

Another goal that must be attained before the verification of Ada programs may be undertaken is the
development of a specification language for Ada. Both a design specification language and an
implementation specification language (hopefully correlated in order to allow both forms of verification to
be applied) will have to be developed. Progress has been made in this area with the Anna language, (see
Appendix D, Section 11.1) and effort is underway in more general areas of specification (see Appendix E,
Section 12.1.4).

4.3. Automated Tools for Verification

A goal in the area of verification (as well as software development) has been the development of
supporting automated tools. These tools aid the developers by performing as much of the detailed
bookkeeping and other automatable work as possible, allowing the developers to use their time in other,
more creative and productive means. Another distinct advantage that resuits from the development of
automated tools (used as a primary argument for the development of prototypes) is the opportunity to use
the tools as an embodiment of the issue at hand to provide for further understanding of the situation.
While applying verification to Ada, the development of such tools as verification condition generators and
symbolic evaluators would allow testing of the semantics being developed to insure that they can be
applied in such an environment, and that they indeed correspond to the execution of the constructs in the
language.

There are two possible mechanisms by which automated tools for the support of verification can be
developed — modification of existing tools, and the development ab initio of a verification system. The
former is clearly a short-term goal, while the latter one of much longer term.

4.3.1. Modification of Existing Verification Tools

The modification of existing verification tools provides a mechanism whereby the investment in those tools
can be leveraged to make as quick as possible a return on that investment in the area of Ada verification.
Maay of the tools that have been developed (expression simplifiers, symbolic execution and interpretation,
theorem provers) are in part or in whole language-independent, and should be amenable to minor
modification for application in the Ada verification arena. Another benefit to use of modified tools would
be the ability of the tools to serve as a prototype testbed for evaluation of proposed semantics of the
language, and allow experimentation without the large investment required by the full-scale development
of a new system.

are currently beyond the state of the art.

n

For current efforts addressing this goal see Appendix D, particularly Sections 11.3 and 11.4, and Appendix
E, Section 12.1.2.

4.3.2. Development of New Verification Tools

The development of new verification tools provides the opportunity to make a cohesive set of tools
particularly geared toward the needs of systems developers using Ada. It also provides an opportunity to
develop the tools themselves in Ada (leveraging off of the experience of previous developments), as well as
to possibly integrate the tools into environments particularly targeted for Ada development (e.g., ALS).
Experience with Ada is somewhat limited at the moment, and development systems for Ada are still at a
quite immature stage. This would indicate that caution should be taken before attempting to commit
significant resources to such a development. Another reason for hesitancy in committing to such an effort
is the lack of an established formal scmaatics for Ada, a necessary prerequisite to such effort.

5. Research

This section lists particular areas/sub-areas of Ada and verification for which additional research may be
necessary, both separately and in conjunction with one another.

5.1. Verifiability of Ada

Perhaps the greatest obstacle to the application of verification technology to Ada is the fact that the
language was not designed as a verifiable language. Furthermore, the size and complexity of the language
make it difficult to understand, from the point of view of verifiability, not only the constructs in the
language but also interactions between many of the constructs. One solution that has been proposed for
dealing with this complexity is the enforcement of a “verifiable subset” of the language in situations
where verification is applied to Ada software development.

The greatest need in research in Ada [or verification is the development of a formal semantics for the
language. Without such a semaatics, it is impossible to do symbolic evaluation of programs and provide a
verification condition generator. Several efforts have been undertaken in the development of semantics jor
portions of the language, [Luckham80, Pneuli82, Barringer82, Gerth82, Gerth83|, but additional work
needs to be performed to coordinate these edorts and unify their resuits.

In addition to the semantics of the language, the concurrent aspects of the language need further
investigation, since they cause considerable difficuity in use of the language. Lastly, the indeterminancy
features of the language need to be resolved in such a way as to make the language “predictable’’.

5.1.1. Language Subsets

Although the issue of language subsets for compilers has long been considered anathema to the Ada Joint
Program Office, such 1 requirement is not applicable in the area of verification. It is wholly appopriate
to use that portion of the language that is amenable to verification, and use any validated compiler for
the generation of executable code. Determination of appropriate subset(s) to be used in software
development requireing verification could use only that “‘predictable’” subset of the language or follow the
“clusters’ approach (see Section 12.1.8).

”~
o
&

|

-~ .

f

Pd

RS
e

RY AP
A
w¥a a & dv

2
XX

.
. .

1:.‘" i

’
..

=

"’V"'

J&

A :.‘

’

S
"~
..

" .'v hE]

‘e
M

ERUL T A At M e b g, Spte A pie g

e

F '(~a e e)

2 -,
b I
- .'zf-}.
- §.1.2. Formal Semantics RO
s::‘-f'.j
s The Ada language divides quite nicely into two areas in which its semantics can be developed — the —atias
sequential and the concurrent aspects of the language. Further subareas of research in these two areas are
described in the following sections.
’~
"
- 5.1.2.1. Sequential Constructs in Ada
F For the most part, the sequential constructs in Ada are simiiar to those found in other high level

- languages (Pascal, C, CLU, Gypsy), and their semantics can be easily determined from the semantics of
the corresponding constructs in the other languages. There are two particular areas that will require
L additional effort: generics and exceptions.

h - 5.1.2.1.1. Generics .»-'.
Aside from the issue of concurrency in the language, the second most difficult portion of the language is 'j:'_l_._.\
that of generics ‘Ernst, Young80|. While the use of generics is a very powerful concept, care must be RO

. taken to ensure that the semantics are well-defined, and that they are amenable to automatic processing _L
W for use in verification tools. Eﬁ

5.1.2.1.2. Exceptions

" Exceptions, per se, are not a new feature in programming languages [(Good78, Goodenough75]. In Ada
' however, exceptions have been promoted to a more prominent place in the language, and must be treated

with as much care as other constructs in the language, not as an add-on. Although some work has been
done in developing a semantics for Ada expressions [Luckham80], this work needs to be integrated with
e the development of the semantics for the remainder of the language.

- 5.1.2.2. Concurrent Constructs in Ada
As with exceptions, a semantics for the concurrent constructs in Ada has been under investigation

(Barringer82|. And, like the work in the semantics of exceptions, this work needs to be integrated with
the efforts in semantics of the remainder of the language.

5.1.3. Model of Concurrency

As mentioned above, part of the difficulty in obtaining an appropriate semantics of the concurrent
constructs of the Ada language has been due to the choice of the model. The Ada model for concurrency
is that of the rendezvous. A model more commoanly used in languages for verification is that of message
passing. The two are computationally equivalent, however, the message model becomes more difficuit for
verification unless restrictions on other cor.munications are present (e.g., no global variables, a la Gypsy),
and this restriction was deemed too stiff for the language definition. Additional work needs to be done to
see if the rendezvous model can be made more amenable to verification, and/or if a message passing
mechanism could be used in Ada.

et T et e TS e e e, LT e PR O e e e e, .- . DECPIRTER
. - Twe e gt eyt LSRR AP i P U AR T . e el N
» U T DA T RS U Tl T G PPN PO PR i, S REBP EEIPNT N PP VEPE U . S AT AL PR SR TERY S S “.A.\ LGN

(NS I

5.1.4. Predictability

Aside from the non-determinism resulting from the concurrency in the language, another characteristic of
the Ada language is its non-predictability. This characteristic arises from such statements in the :
Language Reference Manual as in Section 11.6 (2) Ezceptions and Optimization:

When, on the other hand, the order of certain actions is not defined by the language, any order can be used .‘-:
by the implementation. -
- | =
or Section 8.4 (8) Subprogram Calls =

The parameter associations of a subprogram call are evaluated in some order that is not defined by the
language. Similarly, the language rules do not define in which order the values of in out or out are copied
back into the corresponding actual parameters (when this is done). v

There are a number of solutions to the difficulty encountered in predictability of programs. The most
straightforward approach would be to eliminate these difficulties from the language. If the language

definition doesn’t specify an ordering in such instances, it should be appropriate to pick a particular

ordering (one, that would be amenable to verification), and recommend that it be instantiated as the

accepted one.f The adoption of a firm policy that any Ada-implemented system to be certified at the B2 -
or higher level must be implemented in “predictable Ada" might be considering.

§.2. Verification >_::_t'.t

In the area of verification, there are a number of issues that relate to the continuing language p
developments that have not yet found solutions. In particular, the areas of concurrency, fault tolerance, .
and real number arithmetic remain to have significant strides made before becoming viable for use in
development of systems.

.-,
PEPELE T

'
PN

ot
vt

v ")

“ ,
PR AR .
AAALLAA.-A'

5.2.1. Concurrency

Verification of general concurrency is a difficult task, due to the usual “flat” address space available in
most programming languages. With suitable restrictions on access to variables and communications
between concurrent processes (such as in Gypsy), some verification of comcurrent processes can be
performed. It would be beneficial to investigate other modeis of concurrency, such as the rendezvous
mechanism of Ada, to find ways of making them more amenable to verification.

5.2.2. Fault Tolerance / Reliability

Fault tolerance has long been a well understood and accepted practice in hardware design, but the
techniques thus used have not been applied in the area of software, or even systems design. Cne
difficulty in this area is the lack of a suitable model of computation for fault tolerance in which
verification co'ud be investigated.

t It is worth noting that it is not only the verification community that has expressed interest in solution to this issue — com-
piler vendors have the same desire to see the language defnition tightened.

L
RN

A.‘.{

L
T

R - S e e . S T T TS . . . I
PR T YA A S T AN LU .. R . L . -t ~
..... e T LT et ST Te e CE t. .

.....
.............

- - - » «t at e Tt - - . 0 . e " m T T DR P - . - . B - . .
B A . KIS NN KN ST R R N R T UL IR SO
PR Wl Yl T RS AL T W TS AT €A U A e aalataiataiatalatatatata aNatatan FUPRE AL S T DI W R DI W NP |

5.2.3. Floating Point Arithmetic

Floating point arithmetic has been an area in verification that has been almost totally ignored. The
major reason for this situation is the fact that an appropriate idealization of floating point arithmetic has
not been developed that would be appropriate for a number of hardware implementations and amenable
to analysis for verification efforts.

5.3. Ada and Verification

Aside from the other issues that arise in the application of verification technology to the development of
software in Ada, a serious effort should be nlaced on looking at the effect of the language on verification
methodologies. Although it appears at first glance that verification should be easily integrated into the
software development process (see Section 6 below), there may remain peculiarities with regard to Ada,
due to the advanced features present in the language. These features, not present in other languages
designed for verification, might inhibit the choice of methodologies available for verification.

8. Verification and the Software Development Process

This sez}tion describes an approach for making verification an integral part of the software development
process.' It recommends where those issues raised in Section 3 can be addressed, and suggests efforts to be
undertaken as well as policy to be encouraged in order to achieve the desired goals, both in the short and
the long terms. The various areas in which verification is applied directly follow the waterfall diagram
provided in Section 2.2.

6.1. Requirements

Although there is limited application of verification technology to the requirements phase of a software
development effort, it is appropriate that verification be taken into consideration at this stage. If
verification is intended for an effort, it will be beneficial to start with a formal statement of the
requirements. Such a statement could serve as a “‘contract’”’ between the developers of a system and any
contracting party. An example of an informal requirements presentation (the KAIS FEU) in [Smith84] is
turned into a formal one in {Good84a].

6.2. Design

In the design phase, verification can be applied to show that the design indeed satisfies the requirements
developed in the previous step. This step can be taken in conjunction with the design development,
although many times the design is developed without any regard for verification, and the verification is
not considered until after the design is completed. It is, however, at this stage that the pressure to
produce a running system increases, and projects often split into two directions — prototype development
and verification. This split has the unfortunate result of not allowing any feedback from the design
verification to affect the design, and subsequently the implementation. As a result, the system whose
design was verified may not correspond to the system implemented. This appears to be the case reported
in [SIFT]. A design (and implementation) verification where the design verification indeed corresponds to
the implementation is presented in [Smith81], while the design verification of the KA'S FEU mentioned
above is presented in [Good84e|.

t A particularly good treatise on the methodology for applying verification technology in the software development process
particularly oriented to the TCSEC Al level of certification can be found in [Good84d|.

O

P S A T IS AP R . B P N A U
VI LIPS S SRy AL e AN G i YT W P WP L S

FrE
L ;'
A
_:;‘ ,-:‘:n
6.3. Implementation and Testing e :.%
A
With an approach to program development that doesn’t allow (or encourage) the implementation to ; E
progress any faster than the implementation verification, application of verification technology in the RN
implementation and testing phase is straightforward. As each succeeding level of software is developed, it ANEN
is proven correct with respect to its specification. By the time the development reaches the lowest levels e :-::}
of the implementation, each of the higher levels will have been verified in turn. PO
-x-.‘
One area where verification technology that has been overlooked in the software development process is - i =
the automated development of test cases, particularly for modules. [mplementation verification requires e
the development of verification conditions, obtained by a symbolic evaluation of the program. This AR
symbolic evaluation identifies the various paths possible during a program’s execution, and could be used oo
to determine a set of test inputs that could exhaustively exercise particular modules.
i Another application of verification technology is in the area of “reusable” software. Once a particular set r
F of software (e.g., packages, libraries, etc.) were developed and verified, they could be used in the software o
a development process without requiring the reimplementation aad reverification of their functionality. If a e
particular application can leverage off the work in a similar application, perhaps the benefit of reusable IERIOD
theories [Good82c| and verified libraries can also be put to use. o
ool
8.4. Maintenance
Maintenance in the software development lifecycle is what occurs after the software has been ‘‘released”,
and recommendations for changes, updates, fixes, etc. start being encountered. It is this phase that lends R
justification to the claim of the non-sequential aspect of the waterfall diagram presented in Section 2.2.
Although at some point in the system development process it may be desirable to take the current system, ! ! E
designate it as a prototype, and proceed from scratch with a new development, more often the current oy
system is modified to add an additional feature or modify the manner in which a particular feature
operates. Most often, this modification is performed by feeding back to the implementation and testing R
phase. However, to keep the entire dtvelopment lifecycle in mind, it is appropriate o return to the IO
requirements phase, and indicate how the change affects the requirements. the design, and the ‘-:".-'\:
implementation and testing phase. This is an area that is also mpe for application of verification n
technology. N
The most applicable principle of verification technology for use in the maintenance phase of software S
development is that of incremental methods [Moriconi77|. Similar in concept to the principle of separate R
compilation (available in many languages and compilers, and made explicit in Ada), the principle of e
incremental methods for verification technology states that only those portions of a system that have been I B
changed need to be re-verified for the system to remain “proven”. As (for example) the reimplementation = =
of (the body of) a function or procedure in a package in Ada does not require the recompilation of those .
other units that depend only upon its interface specification, so the reimplementation of a unit that .
continues to meet its pre- and post-condition specifications does not require the reverification of any other N
units. S
7. Research and Developmeat Plan e
This section describes the particular research and development efforts that are recommended for the o
deployment of Ada verification capabilities. Time schedules, estimated levels of effort, and
interdependencies are provided both in a narrative and a tabular form. Such estjmates must be tempered \:-:;

with the understanding that independent efforts such as would be expected of such large projects would - r-
incur additional startup overhead and initial familiarity iearning curves. It must also be understood that
a coordination of these eflorts will also require additional eflort. Finally. these estimates are only that —

r_-"'_-_'_(?_3_'_»_":._"1"’1."-" DAt AN UG e e i o N o R A MNP SRR S SORr Sl o RN AR A e ghatutianpiur-alar JARE Ay ol e e Jbut da-ulin: e o intofir diar)

bl estimt.es.f Although based upon the experiences of others in performing similar work in the verification
community, these are extrapolations into an unknown arena, with many possible pitfalls present.

' The schedule as presented is predicated on a number of assumptions. Foremost among those is the ability
i to start the efforts immediately. While this may be a fallacious assumption, it is possible that the existing
an efforts may be leveraged off of in order to overcome the initial startup and learning overhead. Secondly,
& the schedule attempts to complete as much work by the end of 1982 in order to be able to provide input
to the language maintenance committee, which will be considering language changes in that time frame.

7.1. Formal Semantics of Ads

o The development of the Ada language itself was a multiyear task, requiring the resources of numerous
individuals. As a result, the developments of a semantics for the language ought to have the same flavor,
and is likely to have a similar extent. Time should be allowed for review of any results, and for
experimentation with prototype verification systems to investigate the appropriateness of the developed
semantics.

The two areas of Ada for which semantics must be developed are the sequential and the concurrent parts
of the language. The split is a natural one, and lends itself to a useful separation of concerns.

7.1.1. Sequential Portion

A number of efforts have begun to address this issue (see Appendix E, Sections 12.1.3 and 12.3), although
. no results have been published or reviewed as of yet. It is estimated that this effort will require ten stafi-
I years over two and one half calendar years, including serious outside review.

7.1.2. Concurrent Aspects

Once a semantics for the sequential portion of the language has begun, work on the concurrent aspects
should be started and integrated with the sequential work. It is a vital necessity that these two effort be
done in concert, so as not to develop a semantics for the sequential portion of the language that is
incompatible with a semantics for the concurrent aspects. This effort is estimated at six staff-years over
two calendar years.

7.2. Specification L:n-guage

Although not specifically designed as a language for the proof of programs concerning Ada, the Anna
specification language provides an excellent starting point for the development of a specification language
for verification work. Modifications in order to more adequately support verification oriented constructs
should be investigated, and the language extended to handle these constructs. Furthermore, integration of
a specification mechanism to describe concurrency should be performed.

h'

'. a
t- t These estimates should probably be considered «s the midpoint in a range, running from possibly twenty percent lower to
twenty percent higher.

- - N - - . . . - . - _tw v PR R ., - - .
D AP T AL S PP PP VS e et et e L

MR

..n . v;’) I,‘ '. .

B PRI

o

EERIRN

7.2.1. Sequential Portion

With the Anna language as a basis for the development of a specification language, it will be necessary to
extend the language to include more proof-theoretic constructs necessary for doing implementation
verification. This effort is estimated at three stafl-years over one calendar year.

7.2.2. Concurrent Aspects

In concert with the development of the formal semantics for the concurrent aspects of the language, and
after the work on the specification language for the sequential portion of the language has begun, work on
integrating specification constructs for the concurrent aspects of the language should be integrated into
the specification language. As with the work on the semantics, this effort should be done in concert with
the effort on the sequential portion of the specification language to insure their compatibility. This effort
is estimated to require two staff-years over one calendar year.

7.3. Automated Verification Tools

There are two possibilities for the development of automated tools in the support of verification activities
— prototype tools for the short-terni, and (possibly ALS) integrated tools for the long term.

7.3.1. Prototype Tools

A number of efforts are underway in the development of prototype tools for the support of verification
with Ada. Some known efforts are listed in Appendix D, particularly Sections 11.3 and 11.4. These sorts
of efforts should be encouraged in the short term (up to two-three years calendar time) in order to gain
more experience with the similarities and differences between Ada and other languages, and the way in
which verification impacts the use of Ada as a development language. The support of two such projects
over the next two and one half years could amount to some ten staff-years.

7.3.2. Integrated Tools

Plans should be laid for the long term development of an Ada verification capability that would be
integrated with the remainder of a development system currently envisioned for soitware development in
Ada. A significant amount of understanding and experience with applied verification using Ada would
have to be obtained, and used in the development of such a system.

Current verification systems are the result of many people’s efforts over a significant period of time, and it
ought not to be expected that attacking the Ada problem will be any simpler. A critical mass of
approximately six individuals working over a three year span is probably a lower bound on the estimate
necessary.

e
P

NI AR e fin® Aa* L Aatuulel Jhaih Sl Sat St Sf e Sad Saie & h Sag S A 0 Al g Al Bl Sl e el el ot A

Ik

T T e —m

7.4. Tables
The following tables provide the information just presented in a graphic tabular form. The first table
! describes the recommended time schedules for the various tasks, and the second table the staffing level.

Again, these tables are predicated on starting immediately, and attempting to complete as much effort as

possible to allow input to the language maintenance committee by 1988.

I?;lcndu
=

89

89

89

85 85
34

86 88 86 36
1 2 3 4

87 87 87 &7
1 2 3 4

88 83 88 88
1 2 3 4

t Qumn‘

Semantics
Sequential
Concurrent

—

—

Sequential
Concurrent

Spec. Language 0

— !

Tools
Prototype
| Integrated

Calendar

89

89

89

Qumcr

-~ |8
~ (8
w8
-8

-]

Semantics
! Sequential
Concurrent

[
(7]
(2]
«

Spec. Language
Sequential
Concurrent

w
[T 2

Tools
Prototype
Integrated

—

SRS

et

AN

L df 1D

. SO

8. Appendix A - Current Ada Efforts Requiring Verification

This appendix lists the known efforts that require the use of Ada and have some requirements for
verification of one sort or another. Current status of the efforts and a relevant point of contact are
identified.

8.1. Inter-Services/Agency Automated Message Processing Environment (I-S/A AMPE)

The AMPE project requires the use of Ada as a PDL for the system design as well as the accreditation of
the system as an Al system according to the TCSEC.

8.2. Department of Defense Intelligence Information System (DoDIIS)

The DoDIIS is currently investigating the use of Ada on a project-wide basis for re-implementation of it
database systems. The are no known verification requirements per se at this time.

Defense Intelligence Agency
Attn. RSE1B (Cpt. Frank Stellar)
Washington, DC 20301-6111
(202)-373-3012

8.3. World-Wide Military Command and Control System Information System (WIS)

The WIS has a mandated requirement for a majority of the system to be written in Ada, and an unstated
requirement for multi-level security, but no explicit requirement for verification.

Col. William Whitaker

WIS JPMO/ADT
Washington, DC 20330-6600
(703)-285-5085

8.4. Army Secure Operating System (ASOS)

The Army Secure Operating System (formerly Military Computer Family Operating System - McFQOS) is
a program with the goal of developing an Al operating system coded in Ada with the express purpose of
running Army tactical applications also coded in Ada. The system is currently undergoing prototvping
with the top level specification being done inhouse in HDM Special, and the preliminary software compiied
using the ICSC compiler. Plans are to migrate to the Ada Language System (ALS) as it becomes
available.

Eric Anderson

TRW

R2/1124

1 Space Park

Redondo Beach, CA 90278
(213)-535-5776

B N

A

- et Lt L g . a et L S L . . . T D LN S et et .ot
SRR TP N - el -SSP ¢ G DY P PP R T NIV IS NI, SR R . hz_.r.Av_.-.A~-r-L‘,_A;.;1

v v w - - -

4 EETRTTR Y OV ¥ v ¥V rra

S L O AT T S v st ater Jhaaan

:

L4
.

kA

R
PR

]

8.5. Secure Communications Protocol

A IOt Bl M AR AL A S S e Sue Aun s o B 40 La 20 0 en e 2

The Network Division of the Department of Defense Computer Security Center is investigating the issue
of the development of secure communications protocols using Ada and using verification techniques to
prove the security of the protocols.

Ken Rowe
DoDCSC, C3
9800 Savage Road

Ft. George G. Meade, MD 20755-8000

(301)-859-68790
DDN: rowe@tycho

« " -7 . . " - LY - . CHRT N
PP P PR W PO RPN Y D)

15

et AT "
.
ek A e et

R SR L RN

P T ST B
AT ST AP,

A

RS
B e, £

ARPEPGY

At -

L G T
PR RN

Ay

AR R A

Se, e N
[Y [NRRN
adat et atat

“
LI

.
2'ale A
v (g
AR
o

9. Appendix B - Verification in the Software Development Process T

This appendix lists the know efforts attempting to determine appropriate methodologies / metaphors for -
the use of verification in the software development process. It lists those that are specific to the Ada -4
language as well as those that are not.

{l .,

B
ta s
v o %
v

1
v, 7

- 9.1. ACM National SIGAda Design Methodology Committee

LI IR LIS
3
r

“v}'

-y

8 This committee chair is coordinating the Ada Verification work with other efforts underway in the area of "‘
the methodology of Ada software development. A presentation of the results of the first [DA workshop E
will be presented at the SIGAda conference this summer.

Alton Brintzenhoff
SYSCON Corp.
3990 Sherman Street . -
- San Diego, CA 92110 R
- (619)-296-0085

DDN: sci-ada@eclb

AW
‘.

VoL
A hdimne et

S .
VIR T Y S)

9.2. Verification in Life Cycles ™ E:—f

See the corresponding entry in Appendix D, Section 11.4.5, for a working subgroup resulting from the
First IDA Workshop on Form.:! Specification and Verification of Ada.

]
R
9.3. Ada-Europe Formal Methods Working Group A “ - ’

The Formal Methods Working Group of Ada-Europe is preparing an Ada style guide for the use of 2
verifiable subset of Ada to be used in the development of programs intended to be verified. (It appears o
that this is the same group that is working on a formal semantics for the language - see Section 12.3.) N,

e . e T T) ~ O
PRI SNPGRS WA I RSP UPLIT IR U PSR |

| ACRANSARA A S e AR AR At f 8 A AA A LA A AR AN S AP0t oA R e Rl anh B S L Rt Sl B i et 5ok A Bt Skl ot] fatint lat A et o e oJu S ofe can SN 2 S S g Al Al Tof L gt gt

10. Appendix C - Current Verification Systems

This appendix lists current efforts in verification, particularly those that are unrelated to the verification
E of Ada. (For a list of those efforts that are particularly related to Ada, see Appendix D.) A good starting
point for comparative evaluati%ns can be found in (Cheheyl81]. Another evaluation is currently underway
with a report due out this fall.’" The current status and point of contacts for each of the efforts are listed

r

P with each effort.

h S .t

h LN

I In addition, some of the more visible applications of each of these systems are listed, with the current "?‘,‘—
- status and/or results of the applications. Points of contact are also provided where available. E-‘__.

- X

10.1. Gypsy Verification Environment (GVE)

The following are the first three paragraphs of "Using the Gypsy Methodology” [Good84b]. They Eh
adequately describe the Gypsy methodology. -

The Gypsy methodology i1s an ntegrated system of methods, languages, and tools for designing and build- o
ing formally verified software systems. The methods provide ‘or the specification and coding of systems <R

N that can be rigorously verified by logical deduction to always run according to specification. These O
P specification, programming, and verification methods dictated the design of the program description -
language Gypsy. Gypsy consists of two intersecting components: a formal specification language and a ﬁ...

veniaole. high ievel programming language. These component languages can be used separately or collec- R
tively. The most important characteristic of Gypsy, however, is that it is fully verifiable. The entire Gyp- DU
sy language is designed so that there exist rigorous, deductive proof methods for proving the consistency of Rt
specifications and programs. The methodology makes use of the Gypsy Verification Environment (GVE) to S
= provide automated support. The GVE is a large interactive system that maintains a2 Gypsy program et
. description library and provides a highly integrated set of tools for implementing the specification, program- p
' ming, and verification methods. T

~.- The Gypsy methodology may also be applied strictly to the design phase of system development. For ex- e
N ample in certain applications, particularly in the security domain, it is considered desirable to prove that a SR
' system’s specifications possess specific properties. [n Gypsy these properties would typicaily be stated as i
lemmas or as the specifications on an abstract data type, and the verification of the design would consist of e

-, demonstrating that the high level specifications satisfy these lemmas and type specifications. For more on EL:
proving properties of specifications see (Good84c]. A

The effective range of application of the methodoiogy depends on the applicability of Gypsy to a particular S
problem. Gypsy is suitable for a wide range of general and systems programming applications. Gypsy was
- derived from Pascal and retains much of the wide applicability of Pascal. One major exception is the ab- AR

sence of floating point in Gypsy. Gypsy, however, does have major facilities for exception handling, data E .
g abstraction, and concurrency that are not present in Pascal. During its development, the methodology has B
- been used successively in several substantial experimental applications. These include message switching

systems, selected components of an air traffic control system, communication protocols, security kernels,

and monitoring of inter-process communication.

For further information on the Gypsy language and the Gypsy Verification Environment, contact: g',*‘ :
. Dr. Jsnald Good
. Institute for Computing Science and Computer Applications S
. 2100 Main
o The University of Texas RO
‘ t The effort is entitled “Verification Assessment”. The poiat of contact is Richard A. Kemmerer, Computer Scieace Depart- E‘_

ment University of California, Santa Barbara, CA 93108. (805)-961-4232. DDN: dickQuecis-locus.

.,-":_;.._:_;_ e e ,-m“".‘

R e Bt . L. . . e L e e
PRPMEL VRSV, R USO8 W U AP A A VI VR DAE I S S WA DE. VRS W DN DA AT D TR W U DL I I SN P AT DU P WU T U 1 Y S I T

e i g —T——

2
Austin, TX 78712 A
(512)-471-1901
goodQ@utexas-20 -

Some of the more notable applications of Gypsy and the GVE are listed in the following sections. A
listing of Gypsy applications can be found in [Good83].

10.1.1. Enecrypted Packet Interface

The Encrypted Packet Interface (EPI) (Good82a] was the first major trial application of the GVE. The
EPl is a device that sits between a host and an IMP on the ARPANET. Properties of proper encryption
and decryption of TCP (4.0) packets between the two sides of the EPI were specified and proved. The
code implemented interoperated successfully across the ARPANET with a companion interface developed
and implemented independently in conventional assembly code at BBN. —

10.1.2. Message Flow Modulator

The Message Flow Modulator (MFM) [Good82b] is an LSI-11 based security filter that monitors message

flow from the Ocean Surveillance Information System (OSIS). The MFM monitors all messages for 1&
occurrences of certain security sensitive phrases. It has been demonstrated successfully in an operational
environment.

10.1.3. KAIS Front End Unit

[

The KAIS (Korean Air Intelligence System] Front End Unit (FEU) is a security filter that releases
. messages segments from a high security STREAMLINER system to a lower security Combat Support
é System (CSS). The FEU is currently under development at the University of Texas and an attempt to
meet all relevant certification requirements under the Al criteria of the DoDCSC. Some reports on the
KAIS FEU include the requirements [Smith84], design (security model amd top level specifications) [Good
84a], and design proofs [Good84e].

g

10.2. Affirm

What follows is the introduction of a brief paper put together for the Verification Workshop that took
place in February. It documents the current status of the AFFIRM system.

The AFFIRM Program Verification System originated at the University of Southern California [nformation
Sciences I[nstitute (ISI). It is an experimental system for the algebraic specification and venfication of
abstract data types and Pascal-like programs using these types. AFFIRM-85 is an enhanced version of AF-
FIRM that is being developed at General Electric Corporate Research and Development Center (GE-CRD).
This paper briefly describes two major extensions that will be completed early in 1985. The primary pur-
pose of these and several minor extensions is to enable the use of AFFIRM in carrying out a larger part of
the software development process than previously has been possible.

T - V- E Y Ty~

The Hierarchical Support mechanism of AFFIRM-85, has been designed to support the approach ‘o
hierarchical organization of abstract data types and their implementations, supplemented by a method of

connecting equational implementations to Pascal procedures and functions. The Hierarchical Support ~
mechanism, has been implemented. i
:: The heart of the AFFIRM system s a natural deduction theorem prover for the interactive proof »f data
e
.’
L: .4 - .
] A F
t 1 Q . ‘
., T .A~ L N < T PO I N - e .".“'-..‘ A :
[NEAEANIERAT Y -';-':-' VT P AP R PT AR VR, N RPN .-‘} o -.;..\"-"" ‘.t-' ‘- '.'.A.“n“ A A a “,;"‘4.'_‘-) "-_‘."-_.';;'r-':_..'_‘..

R T N N W W N N T T R T T T T T T TR TN T T Y YT v TRV T R T TR TR T LWL e
R
oy

t RO
3 <
o)
. type properties and venfication conditions. A Reusable Theorems mechanism that allows the user to keep :','_.::‘_4‘
track of what assumptions a theorem depends on, even across session boundaries has been designed and is Ry
currently under implementation. _ﬁ:.-
) S
' N
David R. Musser N,
" General Electric Research & Development Center :::::}
i KW C265A g
- P.O. Box 8 \ \
Schenectady, NY 12301 -3
q-_ (518)-387-5964 ¥

DDN: musser@ge-crd

iy

A 10.3. Hierarchical Development Methodology (HDM) S
HDM, the Special specification language, and the tools supporting the methodology and language are ‘* .

currently undergoing enhancements and revisions. From [Melliar-Smith85], goals of the new system e

include: ﬁ:-:’_ -

o Specifications in first order predicate calcuius with second order capability :".‘:i

' ¢ Strong type checking with overloading " -

o Parameterized modules with semantic constraints
o User interface based on multi-window screen editor [EMACS]
. ¢ Theorem proving by reduction to propositional calculus, with decision procedures for common theories

o Hoare sentences and code proof

»
I
LA SN

e Muitilevel security (MLS) checking by information flow analysis

»

HDM and Special have been used in the development of a number of projects, some of which are listed
- . below. In addition, the Army Secure Operating System being developed by TRW (See Appendix A,
R Section 8.5} will be using HDM. -
P. Michael Melliar-Smith -
Computer Science Laboratory T
SRI International PR
- 333 Ravenswood Ave. E_;
Menlo Park, CA 94025 '
melliar-smith@sri-csl
o 10.3.1. System Implemented for Fault Tolerance (SIFT) L
[1
“ Although a significant amount of work was completed under the uuspices of this effort [Levitt83bl, it is =
not clear that the effort indeed provided the sorts of results that were being sought or in the particular :3’\“-:
areas being investigated. In a peer review of the results obtained in the effort [SIF'T), a significant amount S
of disagreement over the claimed results surfaced. N
' ot

. Y - .
I A .o AN L. . -t ce T
T LU T T N P | P PR N - . U I TR A
A PR AP P A TP AR IR P e R LT T T e N SN T T e U e W e T T
PP PR PE. P PR P PN Py abhsbslbabodachc sdndbodadendad o didond ol b d oot B B Sooe Bte Bon B B B A B ta ™ B W R e

.
¢
&

s %
PR
LR SEN

A 1

DN
R

'l
#ats

AL

SERT e .

10.3.2. Kernelized Secure Operating System (KSOS)

KSOS was begun with the goal of designing, implementing, and proving a secure operating system.
[Berson]. Some twenty levels of abstraction were written in Special describing the design of the system.
An implementation was then developed that runs insufficiently fast to be of any use for development of
significant applications.

10.3.3. Probably Secure Operating System (PSOS)

PSOS was designed using HDM by organizing a collection of approximately 20 hierarchically related
modules [Feiertag]. The basing mechanism underlying the PSOS was that of a capability machine. No
implementation has been constructed.

10.3.4. Honeywell Secure Communications Processor (SCOMP)

Honeywell, in concert with the DoDCSC, developed the SCOMP, a communications processor derived
from the Honeywell Level 8 computer, with additional hardware for memory management and protection.
The SCOMP was specified in Special (with trusted processes in Gypsy), verified, then implemented in C &
Pascal. It has received an Al rating from DoDCSC.

10.4. Formal Development Methodology (FDM)
No information has been received on FDM.

Cooper@MIT-Multics

10.5. Modula Verification System

The Modula Verification System (MVS) is an attempt to apply verification techniques and principles to
Modula. In this application, there has been no serious attempt to keep to the definition of the Modula
language, and as a result, programs written in ‘‘verifiable Modula” are not processible by Modula
compilers. One major feature of Modula that was omitted was that of concurrency. In addition to the
parser a verification condition generator and theorem prover have been implemented.

(The effort in the MVS has also resulted in an attempt to convert the MVS into an Ada verification
system. This latter effort is documented in Appendix D, Section 11.5.)

Professor Ray Hookway

Department of Computer Engineering and Science
Case Western Reserve University

Cleveland, OH 44108

(216)-368-2800

DDN: hookwayZcase@csnet-relay

10.6. Verus Verification System

The VERUS Verification System, developed at Compion (formerly DTI) is now undergoing product review

........ R e .- - P O e Y
W ST . a7, L R Y T

. . . N LI Nttt
P RS S Vs R A P L . RO
et ~_.-_4~_..L.‘_‘1.14|L.x-r-x‘z..).;.x-~;a;~,1;!-_Ahkz...‘.l'.'g*_.'_.‘g'_A\.'.r-'_..'..'_4‘-~. a2 "

LN ot _v-,_ N .'_I“. W ol Yf-v RECUMIC i i i A aic o MR APl A S ah el Sodh Sevis ik e B sivi e s sdee s o

&

v

&

oo R T T s S 20 SRR
L .'/.' "' o I.' LA AR '-' ';t .1‘
RIS & R

[PAPAA

Ul TR

o

T e

1

Al R O R SRS At IS IR Nl S AN A S 4a A S S A At it G2t A S o A S A S e

> by Gould in preparation for marketing. It had been used at Compion for several internal developments.

N
". f. '.. EAEN o
PV IOO Y

i Liza Nowell
n Product Planning

-

Gould Computer Systems ::-_: K
o 6901 W. Suarise Blvd. s
N Fort Lauderdale, FL 33313 :\:f_-u;'
" (305)-797-5733 s

MR

aas NI MR B aindirs Sah A M T 2 B B At A Bhee B0e O

S

!
b

7 I 1
>
o
11. Appendix D - Current Ada Verification Efforts A
This appendix lists the current known efforts in verification that are particularly aimed toward the Ada S ._4._
programming language and toward developing systems for automated support of verification. It also ;g ' .

includes those efforts that are more directed toward the language itself, but looking at verification issues
as well. Status of the various efforts, as well as points of contact are provided.

‘¢
A
[k
>, v

e
et
."'l'l.'

'v r

11.1. Anna Specification Language

d
S

From the Preface to the Preliminary Reference Manual for Anna [Luckham84|:

o

Anna is a language extension of Ada to inciude facilities for formally specifying the intended behavior of
Ada programs. It is designed to meet a perceived need to augment Ada with precise machine-processable
annotations so that well established formal methods of specification and documentation can be appiied to

Ada programs.

X‘,’

A number of documents in addition to the reference manual are in process, including: (1) an introduction
to the use of Anna; (2) transformations from annotations to Ada runtime checks; and (3) an axiomatic
semantics of Anna.

Current (and planned) tools include: {1} syntax analyzers, structured editors, tools for detecting simple ok
kinds of errors; (2) a runtime checking system that will translate most annotations into Ada runtime RSN
checks. A formal verification system is regarded as a longer-term undertaking. ol

Professor David Luckham LT
Stanford University q P
ERL 428 CSL o
Stanford, CA 94305-2192
(415)-497-1242 R
DDN: luckham@su-ai :

11.2. Asphodel Specification and Design Language

An effort in Europe has lead to the development of a specification language, Asphodel [Hilll, similar in
style to Anna for the use of design and specification of Ada programs. The language is designed to be
more in the style of the Vienna Development Method [Bjorner| rather than that of the algebraic style ~

[Guttag]. Y

Alec Hill

Central Electric Generating Board

Computing and Information Systems Department, Laud House,
20 Newgate Street, London EC1A 7AX, UK.

L
!
{

11.3. Cornell Attribute Grammar Tools \)
The Cornell Attribute grammar tools have been considered for use in the development of an Ada .::
verification system. This development could occur by generating a formal description of Ada annotated A,
with attributes, and run through the various tools. This idea was first suggested in [Reps84|, and is "R
currently under investigation. AN
22 L

S e e e, ..‘".";'_'K'\-.'~.'- L e R S "."._-' BRSO Wl ..'.' R [R -". - _.-'_.‘_.4‘_-._ »‘A-_ ~“.._
PTG AT P S P PSPPI SO SRR B R S R A S S I I S R A A S P P IR P W T S S S

Paih Sad, Sl Sl el Sn et b tnde Safb b Mt e Ah ol Auba st ia fo e S

Ryan Stansifer
Cornell University
D Ithaca, NY 14850

11.4. Prototype Ada Verification System

Verdix Corporation is currently investigating the development of a prototype Ada venﬁcamon system
based upon the modification of its own validated Verdix Ada Development System (VADS) and the
Gypsy Verification Environment developed at The University of Texas. The front end of the VADS is
being modified to accept not only Ada, but Anna-like annotations as well. Once the syntactic and "
semantic parsing have been completed, the resulting Diana structures will be passed through a SR
“verification filter”” to check that an acceptable ‘“verifiable subset’” of the Ada language is being used. e
- This will then result in a database of structures suitable for reading into the GVE for verification o j

condition generation and theorem proving. This effort is expained in greater detail in [McHugh85]. ‘ti" 4

Karl Nyberg
Verdix Corporation
7855 Old Springhouse Rd.

‘ _ McLean, VA 22102 :;;:'_::"‘_1
b ™ (703)-448-1980 S
£ DDN: nyberg@eclb E.,J
t . UUCP: vrdxhq!karl o
11.5. Modula Verification System Conversion ;
The Modula Verification System developed at Case Western is currently undergoing modification to k ~4i

attempt to turn it into an Ada verification system. The basic premise is that a lot of verifiable Modula
will be similar to verifiable Ada. A particujar example cited is that of the similarity private types in Ada
and exported types in Modula. The programs accepted by the verification system are in a modified Ada
syntax to include pre- and post-conditions and other constructs necessary for verification, and the system
will output a version of the programs acceptable as input to an Ada compiler. No semantic checking of
types, overloading, or any other constructs that a validated compiler is expected to catch are made.

The current system consists of a parser (based upon Herm Fischer’s grammar), the {ront end of a
verification condition generator, and supports library constructs. The semantic parts of the verification
condition generator are currently under design and development.

Professor Ray Hookway

Department of Computer Engineering and Science
Case Western Reserve University

Cleveland, OH 44108

(216)-368-2800

DDN: hockway%caseQ@csnet-relay

11.8. NSA Internal Efforts

A number of efforts are going on within the Department of Defense Computer Security Center. Those
that are listed here deal only with the particulars of the development of verification technology for Ada.

-

Verdix, VADS are trademarks of Verdix Corporation. . .

]
4 . .
AR

\ L

[7 OUSR RS

........

e e Te Lt et N M e et e T T L e e Co C -) ’ . - KD
| SESFLRPUIR AP T S A I A G5 SRS T ST R W I Sl 300 N TG G GG O U G S aladoa.a PR I S A U g eV

R R AR E L A EE AR A ST A S A el T 0t S0 It A AL A M R e A

Eih 4 T A e e e Y Al At atie S An Seie St Biie i St AeMiiec i it At J-Aator

(Other NSA efforts are listed in Appendix A, Section 8.7.) The two particular areas in Ada verification
that are being pursued are the investigation of the verifiability of Ada — how restricted would a verifiable
subset have to be, and the development of tools for performing the automated verification of Ada. Efforts
underway in the second area include both inhouse and pending proposed efforts.

Brian Holland

DoD Computer Security Center, C3
9800 Savage Road

Ft. George G. Meade, MD 20755-6000
(301) 859-6968

DDN: brian@tycho

2Uu

e A A T e e R e S e e YT T e s T S e e T . S R
EAIIII TS A8 IEPE MR AT PV T P SO AL VL ALY AP FE VIOV TR LTS PR VEE VS VRSP UTE PRV ST PP vy

12. Appendix E - Working Groups

This appendix lists current known efforts aimed at investigating the development, deployment and usage
verification techniques in the development of systems using Ada.

12.1. IDA Workshops on Formal Specification and Verification of Ada

The Institute for Defense Analysis (IDA) is conducting workshops on formal specification and verification
of Ada. The first workshop was held in March 1985, and the second is planned for mid to late summer
1985. The first Workshop on Formal Specification and Verification of Ada resulted in a set of proceedings
(currently in draft form) and the establishment of several working subgroups. These subgroups, and the
status of their efforts are presented in the following sections. Although some of the subgroups might be
more appropriately listed in other Appendices, they are included here for consistency, and cross referenced
where appropriate. ’

Dr. Jack Kramer

Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

(703) 845-2263

DDN: kramer@eclb

12.1.1. Secure Systems

The goal of this working subgroup is to attempt to determine the suitability of Ada for use in the
development of secure systems, particularly those intended to I - .ubmitted to the DoDCSC for ratings at
or above the B2 level. The chair of this subgroup is attempting to coordinate efforts with the Ada Task
Force (see Appendix A, Section 8.7.1) which has a similar charter.

Margie Zuk

MITRE Corporation

Burlington Road

Bedford, MA 01730
(617)-271-7580

DDN: security!mmz@mitre-bedford

12.1.2. Near Term Verification
The goal of this working group is to investigate the near term needs and solutions for dealing with Ada
verification. In particular, automated tools for the support of verification in the near term are being

investigated. Participation in the group through dissemination of network mail has begun.

In addition to the efforts uncovered during the IDA workshop, several verification and Ada related
projects are being investigated. Thes» include:

o Ada based fault-tree analysis being done by Nancy Leveson at UCL
o An Ada to Special flow tool being developed by Compusec.

o Application of [BM's venfication methodologies known as the ‘‘Clean Room™ approach to Ada

0 T 4 el afe el —aie St i " e n e "t

BN T I

It is hoped that the working group will meet prior to the next IDA meeting, possibly in early July at RTI.

John McHugh

Research Triangle Institute

Box 12194

Research Triangle Park, NC 27709
(919)-541-7327

DDN: mchugh@utexas-20

Y PR AEER AN g g
P

12.1.3. Formal Semantics

This subgroup is involved in investigating the areas of a formal semantics for the language, both
) sequential and concurrent. Contacts with other organizations, particularly in Europe, who have similar L
l interests have been made, and plans are to convene a one-day meeting this summer, hopefully just before ’ i‘j
the second IDA workshop. .
‘ 1

Norm Cohen
SofTech, Inec.

: 705 Masons Mill Business Park S
i 1800 Byberry Road - i ‘j
Huntingdon Valley, PA 19008

o (215)-947-8880
DDN: ncohen@eclb

i 12.1.4. Specification Languages

LI
No response has been received {rom this chair. St
Friedrich von Henke SIS
SRI International
. 333 Ravenswood Avenue
M Menlo Park, CA 94025 -
. (415)-859-2560]
y DDN: vonhenke@sri-csl e
- :
.*'_ 12.1.5. Verification in Life Cycles -3
This subgroup is looking into how to integrate formal verification techniques with other soltware
development practices in the software life cycle. Coordination with other groups pursuing similar
interests (such as the ACM group mentioned in Appendix B, Section 8.1) is intended. An interim meeting
- is planned before the next IDA workshop.
'..‘- Ann Marmor-Squires
':_j TRW, Defense Systems Group
. 2751 Prosperity Avenue
s Fairfax, VA 22031
o (703) 876-8170
i DDN: marmor@isi
o
. 28

------- L Y -
Wm0 T T e e e T N e e U

. SR N oo L s . Ce o Tea B - e
P Tl NS I T Sl I VIR T W Wl U Tl U Tl S U T D R s PR AT S O P IR PEPRPE- N, PR PO RSN T T IR A

DASASARERENA LSS A7 SR AL A A P AR GG AOL SNCING 1A a6 S ol s peh set SO ouraas o s

s

ATy

v

- .
By

- .

12.1.8. Clusters

This working group is investigating an Odyssey-specific approach to the development of multiple, possibly
overlapping subsets of Ada for use in various software developments. From discussions with the
chairman, it appears that there is little involvement from others outside of the company.

Ryan Stansifer

Odyssey Research Associates, Inc.
408 E. State Street

Ithaca, NY 14850

(607) 277-2020

DDN: rplatek@eclb

12.2. Ada Task Force

The DoDCSC has convened an Ada Task Force to investigate the suitability of Ada in the development of
secure computing systems. Little is known about the efforts of this group, as the head of the task force
(listed below) has denied access to any minutes or proceedings of the groups only meeting to date.

Marv Schaefer

DoDCSC, C3

9800 Savage Road

Ft. George G. Meade, MD 20755-6000
(301)-859-8380

DDN: schaefer@isi

12.3. European Efforts on Formal Semantics
An effort is underway in Europe for the development of a draft Ada language formal definition (Ada FD).
This effort is supported by the EEC, and is being performed at Dansk Datamatik Center. The major

goals of the project are [EEC]:

To obtain as concise a definition of the full ANSI Ada language as is today feasible, in a form which
(0) May serve as a reference for questions on Ada,
and is suitable for further research on the following topics:

(1) formal work in the areas of proof systems for Ada programs,
(2) correct development of correct Ada interpreters and compilers,

(3) the meaningful generantion and verification of Ada test programs, including validaticn of the ACVC
test suite, and

(4) the derivation of informal, but precise, unambiguous Ada reference manuals for various user groups,
in order to help provide:

¢ 1nput to the ongoing standardization work on Ada, in particular to support the [SO rfuture review of the

- Tet . - . - . . - . . Lt e T - - v- - . " . - - . - - - ~ ~ N
L PEV RO C PO SRIPC W T U P P P T S A e A PP S Uy PO I Aty

Ada standard, and

e a worthy, broad, and commonly accepted candidate for the formal component of a future Ada ISO Stan-

dard.

Some subsidiary objectives include:

¢ To help unite various approaches to the informal, and semi-formal descriptions of Ada (by studying how

to relate the proposed Ada FD to e.g. the NYU SETL interpreter for Ada).

o To further develop and research engineering methods suitable for the precise definition of large, complex
software systems (by calling on a wide community of computer scientists to take part both in the actual

Ada FD development, and its review), and thereby

e to further propagate the use of formal methods in software engineering.

Contracting Agency:

Rudolf W, Meijer

Commission of the European Communities
Information Technology and Telecommunications Task Force
A25 9/6A

Rue de la Loi 200

B-1049 Brussels, Belgium

tel: + 32 2 235 7769

telex: 21877 comeu b

telecopier: +32 2 235 0855

DDN: rmeijer@eclb

UUCP: ...!decvax!mevax'hre83!rmeijer

Contractor:

Kurt W. Hansen

Dansk Datamatik Center
Lundtoftevej 1C

DK-2800 Lyngby, Denmark
tel +45 2 872622

telex 37704 ddc dk
telecopier +45 2 872217
DDN: khansen@eclb

(8}
(9 o)

T S SR AP SRR PSP o Cam e
L WP WS W BRI I DR IPY L PN P DR P UL S S BRI S

R |

Coyres

amtemihiite 4

IR ARG S ar o Rt S s RO A M o M i i At aPv I cv - aen ot . AR G AN A MET A A e I A Sk At A S bl i Aedh dk el T
. R . RN '\ Rl A I Sl A - Al AR il

13. References
s [Ada] - Ada Programming Language, ANSI/MIL-STD-1815A, Department of Defense, 22 January 1983.

[Akers83] - Akers, Robert L., A Gypsy-to-Ada Program Compiler, Technical Report 39, Institute for
Computing Science, The University of Texas at Austin, Austin, TX 78712, December 1983,

[Barringer82] - Barringer, H., Mearns, I, “Axioms and Proof Rules for Ada Tasks”, [EEE Proceedings,
- Volume 29(E), Number 2, pp. 38-48, March 1982.

[Berard] - Berard, Edward V. An Object Oriented Design Handbook for Ada Software, EVB Software
Engtneering, Inc. 451 Hungerford Dr. # 701, Rockuille, MD 20850, 1985.

(Berg82] - Berg, H. K., Boebert, W. E., Franta, W. R., Moher, T. G., Formal Methods of Program
Verification and Specification, Prentice-Hall, Inc., Englewood Cliffs, NY 07632, 1982.

[Berson| - Berson, Thomas A., and Barksdale, G. L. Jr., KSOS — Development Methodology for a Secure
Operating System, Ford Aerospace and Communicatiosn Corporation, Palo Alto, CA.

. (Bjorner] - Bjorner, D. and Jones, C. B., “The Vienna Development Method : The Meta Langauge’,
" Lecture Notes in Computer Science, #61, Springer-Verlag.

Boyer79| - Boyer, Robert S., Moore, J Strother, A Computational Logic, Academic Press, 1979.

(Boyer80] - Boyer, Robert S., Moore, J Strother, A Verification Condition Generator for Fortran,
Technical Report CSL-103, SRI International, June, 1980.

" ‘Boyer84| - Boyer, Robert S., Moore, J Strother, “Proof-Checking, Theorem—~Proving, and Program
Verification”, Contemporary Mathematics, Volume 29, pp. 119-132, 1984.

Cheheyl81] - Cheheyl, M. H., Gasser, M., Huff, G. A, Millen, J. K, “Verifying Security”, ACM
Computing Serveys 13(3):279-340, September, 1981.

|

EEC! - The Dreft Formal Definition of ANSI/MIL-STD 1815A Ada, EEC Multiannual Programme,

Project No. 782, Annex 1, Version 14-12-1984, Dansk Datamatik Center, Lundtoftevej 1C, DK-2800

Lyngby, Denmark.

‘Elspas?2! - Elspas, B., Levitt, Karl N., Waldinger, Richard J.,, Waksman, A, “An Assessment of

Techniques for Proving Program Correctness”’, ACM Computing Surveys, 4(2):97-147, 1972.

Emst| - Emst, G.W. and Hookway, R.J., Specification and Verification of Generic Program Units in Ada,

Department of Computer Engineering and Science, Case Institute of Technology, Case Western

University, Cleveland Ohio. R
“ (Evans83| - Evans, Arthur Jr., Butler, Kenneth J., Goos, G., Wulf, Wm. A., Diang Reference Manual,

Revision 3, Tartan Labr iatories, Pittsburg, PA, February 28, 1983. ~—

[Feiertag| - Feiertag, Richard J. and Neumann, Peter G., The Foundations of a Provably Secure Operating ":'

System (PSOS), SRI International, Menlo Park, CA.
[4 (Floyd87] - Floyd, Robert W., “Assigning Meanings to Programs’’, Mathematical Aspects of Computer

Science, Proceeding of a Symposium in Applied Mathematics, American Mathematical Soctety 19, pp. 19- S~

32, Providence, R, 1967. e
I o
A .

A L e e e e e e e L e T T e R T

N Sl Gl g eiielt Al Sl A A B it AR LR - R et R S i A A s s [ofie ol s r——

(Gerhart80| - Gerhart, Susan L., Fundamental Concepts of Program Verification, AFFIRM Memo-15-SLG,
University of Southern California Information Science Institute, Marina Del Rey, CA 90291, February 18,
1980.

[Gerth82] - Gerth, R. “A Sound and Complete Hoare Axiomatization of the Ada Rendesvous”,
Proceedings of the 9th International Colloqutum on Automats, Languages, and Programming, Lecture
Notes in Computer Science 140, Sringer Verlag, pp. 252-264, 1982.

[Gerth83] - Gerth, R. and deRoever, W. P., “A Proof System for Concurrent Ada Programs”, RUU-CS-
83-2, Rijksuniversiteit Utrecht, January 1983.

[Good78] - Good, Donald I., Cohen, Richard M., Hoch, Charles G., Hunter, Lawrence W., Hare, Dwight
F., Report on the Language Gypsy, Version 2.0, Technical Report ICSCA-CMP-10, Institute for
Computing Science The University of Texas at Austin, Austin, TX 78712, September 1978.

(Good79] - Good, Donald I., Cohen, Richard M., and Keeton-Williams, James, Principles of Proving
Concurrent Programs in Gypsy, Institute for Computing Science and Computer Applications, The T
University of Texas at Austin, Austin, TX 78712, January 1979. e

IBM/ University of Newcastle upon Tyne Joint Seminar: Formal Specifications, September, 1982. (Also e
Technical Report # 30, Institute for Computing Science, The University of Texas at Austin, Austin, TX
78712.)

(Good82a] - Good, Donald I., “The Proof of a Distributed System in Gypsy”, in Proceedings of the 15th o ;

[Good82b] - Good, Donald I., Siebert, Ann E., and Smith, Larry M., Message Flow Modulator Final
Report, Technical Report ICSCA-CMP-34, Institute for Computing Science, University of Texas at -
Austin, Austin, TX 78712 December, 1982. ‘ ;)

{

A

[Good82¢] - Good, Donald 1., Reusable Problem Domain Theories, Technical Report 31, Institute for ',:']
Computing Science, The University of Texas at Austin, Austin, TX 78712, September 1982. Lol ;

(Good83] - Good, Donald 1., Gypsy Applications, Internal Report # 111, Institute for Computing Science,
The University of Texas at Austin, Austin, TX 78712, October 1983.

[Good84a] - Good, Donald I, Siebert, Ann E., and Smith, Lawrence M., KAIS FEU Design - Volume |
Security Model Top Level Specifications, Internal Note # 146-A, Institute for Computing Science, The
University of Texas at Austin, Austin, TX 78712, September, 1984.

[Good84b] - Good, Donald 1., DiVito, Bendetto L., and Smith, Michael K., Using The Gypsy Methodology,
Draft Documentation, Institute for Computing Science, The University of Texas at Austin, Austin, TX
78712, June, 1984.

(Good84¢] - Good, Donald I, Mechanical Proofs about Computer Programs, Technical Report # 4I,
Institute for Computing Science, The University of Texas at Austin, Austin, TX 78712 March, 1984.

E (Good84d| - Good, Donald 1., Structuring a System for Al Certification, Internal Mote #145-A, Institute
t" for Computing Scir nce, University of Texas at Austin, September 7, 1984.

=

- (Good84e| - Good, Donald 1., KAIS FEU Design — Volume II, Proofs, Internal Note #147-A, Institute for
- . Computing Science, University of Texas at Austin, September 7, 1984.

P (Goodenough?5] - Goodenough, John B., “Exception Handling: Issues and a Proposed Notation",

Commaunications of the ACM, 18(12):683-696, December 1975.

O R PP R T e e S e) - A - - s
I Y N o PN S WA VA A G A A B S P g T R T S R U T RPN

T TN T E TN S Y N TN T

N
.
g
)

SR e e S el Ao S A s LA 40 SUL As NS MR st uAE S addn See e ane i Bn oo sl e

(Gregory| - Gregory, Samuel T. and Knight, John C., A New Linguistic Approach to Backward Error
Recovery, Department of Computer Science, University of Virginia, Charlottesville, VA 22903.

[Guttag] - Guttag, John et al, “Abstract Data Types and the Development of Data Structures,
Communications of the ACM 20(8):396-404, June 1977.

[Hedrick83] - Hedrick, Charles, ELISP: A Large Address Space [mplementation of LISP for the
DECSYSTEM-20, Rutgers University Computer Science Department, 1983.

[Hill] - Hill, A. D., Asphodel - An Ada Compatible Specification and Design Language, (unpublished
manuscript), Central Electricity generating Board, Computing and Information SYstems Department,
Laud House, 20 Newgate Streeet, London EC1A 7AX, UK.

[Hoare89| - Hoare, C. A. R., “An Axiomatic Basis for Computer Programming’’, Communications of the
ACM, 12(10):578-581, October 1969.

(Hoare76| - Hoare, C. A. R., and Wirth, Niklaus, “An Axiomatic Definition of the Programming Language
Pascal’, Acta Informatica, :2, 1978.

[Hoare81] - Hoare, C. A. R., “The Emperor’s Old Clothes”, 1980 ACM Turing Award Lecture,
Communications of the ACM, 24(2):75-83, February 1981.

(Ichbiah79] - Ichbiah, J. D., Barnes, J. G. P., Heliard, J. C., Krieg-Brueckner, B., Roubine, O., Wichmann,
B. A, “Preliminary Ada Reference Manual” and “Rationale for the Design of the Ada Programming
Language”, ACM SIGPLAN Notices, 14(8), June 1979.

[IDA] - DRAFT Proceedings of the First IDA Workshop on Formal Specification and Verification of Ada,
HQ85-29920/1, Institute for Defense Analyses, 1801 N. Beauregard St., Alexandria, VA 22311, May, 1985.

(Knight| - Knight, John C. and Grine, Virginia S., Symbolic Ezecution of Concurrent Ada Programs,
Department of Computer Science, University of Virginia, Charlottesville, VA 22903.

P
[LNRC| - Formal Definition of the Ada Programming Language, Institut National de Recherche en
Informatique et en Automatique, November, 1980.

(Landwehr81] - Laadwehr, Carl E., “Formal Models for Computer Security”, ACM Computing Surveys,
13(3):247-278, September, 1981.

(Levitt83a] - Levitt, Karl N. The Need for Design Verification in Fault-Tolerant Systems, Computer
Science Laboratory, SRI International, Menlo Park, CA 94025. in Proceedings of the 1983 Mission
Assurance Conference.

[Levitt83b] - Levitt, Karl N., et al., Investigation, Development, and Evaluation of Performance Proving
for Fault-Tolerant Computers, SRI International, Menlo Park, CA 94025, August 1983.

(Luckham?7| - Luckham, David C., Program Verification and Verification-Oriented Programming
American Elsevier, New York, pp. 783-79%, 1963.

(Luckham80] - Luckham, David C. and Polak, Wolfgang, “Ada Exception Handling: An Axiomatic
Approach”, ACM Transactions on Programming Languages and Systems, 2(2):225-233, April 1980.

[Luckham81] - Luckham, David C., von Henke, Friedrich W., “Program Verification at Stanford”, ACM
SIGSOFT Software Engineering Notes, 6(3):25-27, July 1981.

.......

e
.

0
-I
“~
Y
~

Y T R R
LAY

T
PRy
’.'."'.

i
.
b"{'

e
v e T
I
PR S
PRI

Y
[AN

B

EENEAT A0 A U AP L i LS e (. G i e g gl el G Al At Al A Al el Bnf Aud sl hadl sad e Ak paf et

(Luckham84| - Luckham, David C., von Henke, Friedrich W., Krieg-Brueckner, Bernd, Owe, Olaf, Anna -
A Language for Annotating Ada Programs, Preliminary Reference Manual, Technical Report No. 84-261,
Program Analysis and Verification Group, Computer Systems Laboratory, Stanford University, Stanford,
CA 94305, July 1984.

[McCarthy63] - McCarthy, John, A Basis for a Mathematical Theory of Computation, North-Holland,
Amsterdam, pp. 33-70, 1963.

[McCarthy67] - McCarthy, John, and Painter J., “Correctness of a Compiler for Arithmetic Expressions”,
In Schwartz, J. T. (editor), Proceedings of a Symposium in Applied Mathematics, Vol 19, pp 33-41,
American Mathematical Society, 1967.

[McGettrick83] - McGettrick, Andrew D., Program Verification Using Ads, Cambridge Computer Science
Texts - 13, Cambridge University Press, 1983.

[McHugh84| - McHugh, John, Towards Efficient Code from Verified Programs, Technical Report ICSCA-
40, Institute for Computing Science, University of Texas at Austin, March 1984.

McHugh85| - McHugh, John, and Nyberg, Karl, “Ada Verification Using Existing Tools”’, Proceedings of
Verkshop III, to appear in Software Engincering Notes.

Melliar-Smith82} - Melliar-Smith, PM. and Schwartz, Richard, Formal Specification and Mechanical
Verification of SIFT: A Fault-Tolerant Flight Control System, Technical Report CSL-133, SRI
International, January 1982.

Melliar-Smith85] - Melliar~Smith, Michael, and Rushby, John The Enhanced HDM System for
Specification and Verification, Private Communication, Computer Science Laboratory, SRI International,
333 Ravenswood, Menlo Park, CA, June, 1985.

Millen82| - Millen, Jonathan K. and Drake, David L., “An Experiment with Affirm and HDM"”, The
Journal of Systems and Software 2, 159-175, 1981.

"Moriconi77| - Moriconi, Mark S., A System of Incrementally Designing & Verifying Programs, ICSCA-
CMP-9, Institute for Computing Science, The University of Texas at Austin, Austin, TX 78712,
December, 1977.

Musser| - Musser, David R., Aids to Hierarchical Specification Structuring and Reusing Theorems in
AFFIRM-85, Proceedings of the Verkshop II, February, 1985.

(Odyssey84] - Oddysey Research Associates, Inc. A Verifiable Subset of Ada, (Revised Preliminary
Report Oddysey Research Associates, Inc., 713 Clifton St., Ithaca, NY 14850, 14 September 1984.

'PDL| - SURVEY OF Ada-BASED PDLS (FINAL REPORT), Computer Technology Associates, Inc., 7927
Jones Braach Drive, Suite 800W, McLean, VA 22102, January 1985.

‘Pneuli82] - Fneuli, A, and deRoever, W. P., “Rendesvous with Ada — A Proof Theoretical View”,
Proceedings of the AdaTEC Conference n Ada, Arlington, Va., pp 129-137, October 1982.

Reps84| - REps, Thomas and Alpern, Bowen, “Interactive Proof Checking”, in Proceedings of the 1ith
ACM Symposium on POPL, pp. 36-45, Salt Lake City, Utah, January 15-18, 1984.

[Roubine78| - Roubine, Olivier, The Design and Use of Specification Languages, Technical Report CSL-48,
Stanford Research Institute, Menlo Park, CA 94025, October 1976.

P L e e T “."'.‘_.’" e e T T el LI T
LI AT Al UV PR A Sl TS Y I IOT. N Syl L, . - Y. o A AT

PR - 0 .t '-'.. ."‘ oo
Sl al s An s Al At AL A At ta adal At

!
I
J

v(‘
. (LAY

.-

’l

=
P .
s

]
H
a'a

¢
falal s

M S

WA
PRI
PR

»
i
"4

“®
-

s saraal

o ——— - - - r—r ——r
NNt S RSN AEaE M A AR SV S AL S AL M AL 0 A0 R et are g e bh S SA APse o Al Gurtied dute g il s o L dECL RN RE e
- . - ~ - . . . - - . . =~ - " Ta . t. - - . e R - . .~ - .

'Y

»

e, 0
et
RN

CR I

74T
e

o
)

R

v Wl

.

[Rowe] - Rowe, Kenneth E., The U. S. DoD Computer Security Center and Ada, (unpublished manuscript),
Office of Research and Development, DoD Computer Security Center, Fort Meade, MD 20753-6000, April

u 198S.

- [SIFT] - Proceedings of a Formal Verification/Design Proof Peer Review, RTI/2094/13-01F, Validation
Methods Research for Fault-Tolerant Avionics and Control System Sub-Working Groups Meeting, Fault
X Tolerant Computing Program, Center for Digital Systems Research, Research Triangle Institute, Research
Triangle Park, NC 27709, January, 1984.

bnfﬂfﬂif

ot

A S

o
’ ‘.

.
.
«
satels

SAAAY
.

.‘4
<5y vy
‘' 1

»o [Smith84] - Smith, Lawrence M. and Siebert, Ann E., KAIS FEU Requirements, Institute for Computing
Science, University of Texas at Austin, Austip, TX 78712, October 1984.

~ (Smith81] - Smith, Michael K., Siebert, Ann, DiVito, Bendetto. and Good, Donald I., “A Verified
- Encrypted Packet Interface’”, Software Enginecering Notes, Volume 8, Number 3, July 1981.

[Smith83] - Smith, Michael K., Model and Design Proofs in Gypsy: An Ezample Using Bell and LaPadula,
Institute for Computing Science, The University of Texas at Austin, Austin, TX 78712, February 1983.

(TCSECS83| - Department of Defense Trusted Computer System Evaluation Criteria, CSC-STD-001-83, -
- Department of Defense Computer Security Center, Ft. George G. Meade, MD 20755, 15 August 1983. AN

(Tripathi80|] - Tripathi, Anand R., Young, William D., Good, Donald I., “‘A Preliminary Evaluation of
Verifiability in Ada”, Proceedings of the ACM National Conference, Nashville, TN, October 1980.

T [vonNeumann6l] - John von Neumann, “Planning and Coding Problems for an Electronic Computing
i . Instrument” in Taub, A. H. (editor), John von Newmann, Collected Works, Volume V, pp. 80-235, .
Pergamon, 1961. L,_,

[Young80| - Young, William D., Good, Donald 1., “Generics and Verification in Ada”, Procecedings of the
ACM Symposium on the Ada Language, Boston, MA, pp. 123-127, 911 December 1980.

P Young81] - Young, William D., Good, Donald I., “Steelman and the Verifiability of (Preliminary) Ada". : ‘
ACM SIGPLAN Notices, 16(2):113-119, February 1981. O

.
- pl
- -~ ‘-
- e
- S
e '-“b-.
- - .
- E
.
_ A
- A
L AN
S AR
Y - N ‘e
- . [
"y '\ '\.‘\
. "‘!‘.
-.‘ ‘._ Q..
Y e
!_._ i.-.
; . -

I AR AP I AT B S P TR S N SR S S
R A W RN N R SR Y S R SRt SRt S

SR R ANE RO
LIV VIR 3 &% PRI

IR S i P M e A S W A e R A S S A Y b e " B e S AL S AIE AEAE A ST Y RN, SO O T AR I A S

(Y

o
]

e
Distribution List for P-1859 PR

A

PR

M:s. Virginia Castor Dr. C.E. Hutchinson, Dean Jalat

Director, Ada Joint Program Office
1211 Fern Street, Room C-107
Arlington, VA 22202

Mr. George Cowan
Verdix Corporation
14130A Sullylfield Circle
Chantilly, VA 22021

Mr. Don Milton

Verdix Corporation
14130A Sullylfield Circle
Chantilly, VA 22021

Mr. Karl Nyberg

Verdix Corporation
14130A Sullylfield Circle
Chantilly, VA 22021

Defense Technical Info. Center (2 copies)
Cameron Station
Alexandria, VA 22314

DoD-IDA Management Office
1801 N. Beauregard St.
Alexandria, VA 22311

CSED Review Panel
Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois

912 W. Illinois Street
Urbana, llinois 61801

Dr. Barry W. Boehm

TRW Defense Systems Group
MS 2-2304

One Space Park

Redondo Beach, CA 90278

Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Rational Machines

1501 Salado Drive
Mountain View, CA 94043

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

Gen. W.Y. Smith, HQ

Mr. Seymour Deitchman, HQ

Mr. Robin Pirie, HQ

Ms. Karen Weber, HQ

Dr. Jack Kramer, CSED

Dr. John Salasin, CSED

Dr. Robert Winner, CSED

Ms. Audrey A. Hook, CSED (2 copies)
Mr. Terry Mayfield, CSED

Mr. Max Robinson, CSED

Mr. Clyde Roby, CSED

M:s. Katydean Price, CSED (2 copies)
IDA Control & Dist. Vault (15 copies)

’

(a4
el T

i
[A

Pl

ey

. S e
. . .
e LR R
S ‘_
s e .
A Nl 0
P
© . Tetete

R RS s Mbe & » v - v
el N PO IO Kt A (AR R AA fufstul gl %

A Nl hdk ey y
S AL CAVAL A SN S A

Y Py W, - tan "

s et .. .
B SR AR . .
DY e S T S - - - -
- - - - L - " - " - " .
PPEIN PR R 9 Ny PR R L

